问题
解答题
已知数列{xn}的前n项和为Sn,若点Pn(xn,Sn)(n=1,2,…)都在斜率为k的同一条直线上(常数k≠0,1)
(1)求证:{xn}是等比数列;
(2)设数列{xn}的公比为f(k),bn=-f(bn-1),b1=-1,Cn=bnbn+1,求C1+C2+…+Cn.
答案
(1)∵
=Sn+1-Sn xn+1-xn
=k,∴xn+1 xn+1-xn
=xn+1 xn
∴{xn}成G.P;k k-1
(2)∵f(k)=
,∴bn=-k k-1
从而bnbn-1=bn-bn-1,即bn-1 bn-1-1
-1 bn
=-1(n≥2)∴bn=-1 bn-1
,∴Cn=1 n
=1 n(n+1)
-1 n
,∴∑Ck=1-1 n+1
=1 n+1 n n+1