问题
填空题
已知函数f(x)=x2+px+q,其中x,p,q∈R,集合A={x|f(x)=x},B={x|f[f(x)]=x},若A={-1,3},则B=______.
答案
∵A={x|f(x)=x}={x|x2+px+q=x}={x|x2+(p-1)x+q=0}={-1,3}
∴-1,3是方程x2+(p-1)x+q=0的根
∴
即p=-1,q=-3,f(x)=x2-x-31-p=2 q=-3
∴B={x|f[f(x)]=x}={x|f(x2-x-3)=x}
={x|(x2-x-3)2-(x2-x-3)-3=x}
化简可得,(x2-x-3)2-x2=0
∴(x2-3)(x2-2x-3)=0
∴x=
或x=-3
或x=3或x=-13
∴B={
,-3
,-1,3}3
故答案为:{
,-3
,-1,3}3