问题
解答题
已知公比为3的等比数列{bn}与数列{an}满足{bn}=3an,n∈N*,且a1=1. (1)判断{an}是何种数列,并给出证明; (2)若cn=
|
答案
(1)∵等比数列{bn}的公比为3
∴
=bn+1 bn
=3an+1-an=33an+1 3an
∴an+1-an=1
∴{an}是等差数列
(2)∵a1=1,an+1-an=1
∴an=n
则cn=
=1 anan+1
=1 n(n+1)
-1 n 1 n+1
∴Sn=c1+c2+c3+…cn=(1-
)+(1 2
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n
)=1-1 n+1 1 n+1
∴数列{cn}的前n项和为1-1 n+1