问题
解答题
已知数列{an}满足a1=2,an+1=2(1+
(1)求证数列{
(2)设b n=
(3)设Cn=
|
答案
(1)∵an+1=2(1+
)2•an,1 n
∴
=2•an+1 (n+1)2 an n2
∵a1=2,∴{
}是以2为首项,2为公比的等比数列an n2
∴
=2nan n2
∴an=n2•2n;
(2) bn=
=n•2nan n
∴Sn=1•21+2•22+…+n•2n
∴2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得-Sn=2n+1-2-n•2n+1
∴Sn=2+(n-1)•2n+1;
(3)证明:cn=
=n an
>0,1 n•2n
设Tn=c1+c2+c3+…+cn,则T1<T2<T3<T4,
当n≥4时,Tn=
+1 1•2
+…+1 2•22
<1 n•2n
+1 2
+1 8
(1 4
+…+1 24
)=1 2n
+2 3
•1 4
-1 23
•(1 4
)n<1 2
+2 3
•1 4
<1 23
+2 3
=1 30 7 10
综上:c1+c2+c3+…+cn<7 10