已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点. (1)求证:OA⊥OB; (2)当△OAB的面积等于
|
(1)由方程y2=-x,y=k(x+1)
消去x后,整理得
ky2+y-k=0.
设A(x1,y1)、B(x2,y2),由韦达定理y1•y2=-1.
∵A、B在抛物线y2=-x上,
∴y12=-x1,y22=-x2,y12•y22=x1x2.
∵kOA•kOB=
•y1 x1
=y2 x2
=y1y2 x1x2
=-1,1 y1y2
∴OA⊥OB.
(2)设直线与x轴交于N,又显然k≠0,
∴令y=0,则x=-1,即N(-1,0).
∵S△OAB=S△OAN+S△OBN
=
|ON||y1|+1 2
|ON||y2|1 2
=
|ON|•|y1-y2|,1 2
∴S△OAB=
•1•1 2 (y1+y2)2-4y1y2
=1 2
.(
)2+41 k
∵S△OAB=
,10
∴
=10 1 2
.解得k=±
+41 k2
.1 6