问题
解答题
已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*). (1)求证:当n≥2时,{an+2an-1}和{an-3an-1}均为等比数列; (2)求证:当k为奇数时,
(3)求证:
|
答案
(1)由an+1=an+6an-1(n≥2,n∈N*)得:
an+1+2an=3(an+2an-1),an+1-3an=-2(an-3an-1)
且a2+2a1=15,a2-3a1=-10.
∴当n≥2时,{an+2an-1}是首项为15公比为3的等比数列,
{an-3an-1}是首项为-10,公比为-2的等比数列.
(2)由(1)得an+1+2an=15×3n-1,an+1-3an=-10×(-2)n-1
以上两式相减得an=3n-(-2)n.
当k为奇数时,
+1 ak
-1 ak+1
=4 3k+1
+1 3k+2k
-1 3k+1-2k+1 4 3k+1
=
=-7×6k+8×4k 3k+1•(3k+2k)•(3k+1-2k+1)
<0,4k•[8-7•(
)k]3 2 3k+1•(3k+2k)•(3k+1-2k+1)
∴
+1 ak
<1 ak+1
.4 3k+1
(3)由(2)知,当k为奇数时,
+1 ak
<1 ak+1
=4 3k+1
+1 3k
;1 3k+1
∴当n为偶数时,
+1 a1
+…+1 a2
<1 an
+1 3
+…+1 32
=1 3n
(1-1 2
)<1 3n 1 2
当n为奇数时,
+1 a1
+…+1 a2
<1 an
(1-1 2
)<1 3n+1 1 2