问题 解答题
设数列{an}的前n项和为Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t为正常数,n=2,3,4…).
(1)求证:{an}为等比数列;
(2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
1
bn-1
)(n≥2)
,试求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
答案

(1)证明:∵a1=1,3tSn-(2t+3)Sn-1=3t(n≥2,n∈N*)①

∴3tSn-1-(2t+3)Sn-2=3t(n≥3,n∈N*)②

①②两式相减得

3tan-(2t+3)an-1=0
an
an-1
=
2t+3
3t
(n≥3,t为正常数)

又n=2时,

3t(1+a2)-(2t+3)•1=3t
a2=
2t+3
3t
a2
a1
=
2t+3
3t

∴an是以1为首项,

2t+3
3t
为公比的等比数列.

(2)∵f(t)=

2t+3
3t
=
2+
3
t
3
,∴bn=
2+3bn-1
3
,∴bn-bn-1=
2
3
(n≥2)

∴bn是以1为首项,

2
3
为公差的等差数列,∴bn=
2n+1
3

∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)

=b2(b1-b3)+b4(b3-b4)+…+b2n(b2n-1-b2n+1

=-

4
3
(b2+b4+b2n)=-
4
3
n(
5
3
+
4n+1
3
)
2
=
-8n2-12n
9

单项选择题
单项选择题