问题
解答题
设数列{an}的前n项和为Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t为正常数,n=2,3,4…). (1)求证:{an}为等比数列; (2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
|
答案
(1)证明:∵a1=1,3tSn-(2t+3)Sn-1=3t(n≥2,n∈N*)①
∴3tSn-1-(2t+3)Sn-2=3t(n≥3,n∈N*)②
①②两式相减得
3tan-(2t+3)an-1=0 ∴
=an an-1
(n≥3,t为正常数)2t+3 3t
又n=2时,
3t(1+a2)-(2t+3)•1=3t ∴a2=
∴2t+3 3t
=a2 a1 2t+3 3t
∴an是以1为首项,
为公比的等比数列.2t+3 3t
(2)∵f(t)=
=2t+3 3t
,∴bn=2+ 3 t 3
,∴bn-bn-1=2+3bn-1 3
(n≥2)2 3
∴bn是以1为首项,
为公差的等差数列,∴bn=2 3 2n+1 3
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
=b2(b1-b3)+b4(b3-b4)+…+b2n(b2n-1-b2n+1)
=-
(b2+b4+b2n)=-4 3 4 3
=n(
+5 3
)4n+1 3 2
.-8n2-12n 9