问题
解答题
已知数列{an}的前n项和Sn =
(Ⅰ)求{an}的通项公式; (Ⅱ)设bn=log3an,求数列{anbn}的前n项和. |
答案
(Ⅰ)因为Sn =
(an -1),n∈N+,所以Sn+1 =3 2
(an+1 -1).3 2
两式相减,得Sn+1 -Sn =
(an+1 -an );,即an+1 =3 2
(an+1 -an )3 2
∴an+1=3an,n∈N+.
又s1 =
(a1 -1);,即a1 =2 3
(a1 -1);,所以a1=3.3 2
∴{an}是首项为3,公比为3的等比数列.从而{an}的通项公式是{an=3n,n∈N+;
(Ⅱ)由(Ⅰ)知bn=log3an=n,设数列{anbn}的前n项和为Tn,
则Tn=1×3+2×32+3×33++n•3n,3Tn
=1×32+2×33+3×34++(n-1)•3n+n•3n+1,
两式相减得-2Tn=1×3+1×32+1×33++1×3n-n•3n+1
=
(3n-1)-n•3n+1,3 2
所以Tn=
•3n+1+2n-1 4
.3 4