问题
解答题
已知数列{an}满足a1=
(1)试判断数列{
(2)设bn=
(3)设cn=ansin
|
答案
(1)∵
=(-1)n-1 an
,2 an-1
∴
+(-1)n=(-2)[1 an
+(-1)n-1],1 an-1
又∵
+(-1)=3,1 a1
∴数列{
+(-1)n}是首项为3,公比为-2的等比数列.1 an
(2)依(1)的结论有
+(-1)n=3(-2)n-1,1 an
即an=
.(-1)n-1 3•2n-1+1
bn=(3•2n-1+1)2=9•4n-1+6•2n-1+1.
Sn=9•
+6•1•(1-4n) 1-4
+n=3•4n+6•2n+n-9.1•(1-2n) 1-2
(3)∵sin
=(-1)n-1,(2n-1)π 2
∴cn=
=(-1)n-1 3(-2)n-1-(-1)n
.1 3•2n-1+1
当n≥3时,
则Tn=
+1 3+1
+1 3•2+1
+…+1 3•22+1
<1 3•2n-1+1
+1 4
+1 7
+1 3•22
+…+1 3•23
=1 3•2n-1
+11 28
[1-(1 12
)n-2]1 2 1- 1 2
=
+11 28
[1-(1 6
)n-2]<1 2
+11 28
=1 6
<47 84
=48 84
.4 7
∵T1<T2<T3,
∴对任意的n∈N*,Tn<
.4 7