问题
解答题
已知等比数列{an}的前n项和为Sn,满足Sn=bn+r(b>0且b≠1,b,r均为常数) (1)求r的值; (2)当b=2时,记bn=
|
答案
(1)因为Sn=bn+r,当n=1时,a1=S1=b+r,(1分)
当n≥2时,an=Sn-Sn-1=bn+r-(bn-1+r)
=bn-bn-1
=(b-1)•bn-1,(3分)
又∵{an}为等比数列,
∴a1=(b-1)•b0=b-1=b+r,
∴r=-1.(4分)
(2)证明:由(1)得等比数列{an}的首项为b-1,公比为b,
∴an=(b-1)•bn-1,(5分)
当b=2时,an=(b-1)•bn-1=2n-1,
bn=
=n+1 4an
=n+1 4×2n-1
,(6分)n+1 2n+1
设Tn=b1+b2+b3+…+bn,
则Tn=
+2 22
+3 23
+…+4 24
,n+1 2n+1
Tn=1 2
+2 23
+3 24
+…+4 25
+n 2n+1
,(7分)n+1 2n+2
两式相减,得
Tn=1 2
+2 22
+1 23
+1 24
+…+1 25
-1 2n+1 n+1 2n+2
=
+1 2
-
×(1-1 23
)1 2n-1 1- 1 2
=n+1 2n+2
-3 4
-1 2n+1
,(9分)n+1 2n+2
所以Tn=
-3 2
-1 2n
=n+1 2n+1
-3 2
.(10分)n+3 2n+1