问题
解答题
数列{an}满足a1=2,an+1=an2+6an+6(n∈N×) (Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列; (Ⅱ)求数列{an}的通项公式; (Ⅲ)设bn=
|
答案
(Ⅰ)由an+1=an2+6an+6得an+1+3=(an+3)2,
∴
=2log (an+1+3)5
,即cn+1=2cnlog (an+3)5
∴{cn}是以2为公比的等比数列.
(Ⅱ)又c1=log55=1,
∴cn=2n-1,即
=2n-1,log (an+3)5
∴an+3=52n-1
故an=52n-1-3
(Ⅲ)∵bn=
-1 an-6
=1 an2+6an
-1 an-6
,∴Tn=1 an+1-6
-1 a1-6
=-1 an+1-6
-1 4
.1 52n-9
又0<
≤1 52n-9
=1 52-9
.1 16
∴-
≤Tn<-5 16 1 4