问题
解答题
已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*. (1)若数列{an} 满足
(2)若数列{bn}满足:b1=1,bnbn+1=
|
答案
(1)求导函数可得f′(x)=2ax+b,由题意知b=2n,16n2a-4nb=0
∴a=
,b=2n,则f(x)=1 2
x2+2nx,n∈N*. (2分)1 2
∵数列{an} 满足
=f′(1 an+1
),f′(x)=x+2n,1 an
∵
=1 an+1
+2n,∴1 an
-1 an+1
=2n,1 an
∵a1=4,
-1 an+1
=2+4+…+2(n-1)=n2-n1 4
∴
=(n-1 an
)21 2
∴an=
(6分)4 (2n-1)2
(2)证明:①由b1=1得b2=
,由bnbn+1=1 3 1 2
=an+1
得1 2n+1
=bnbn+1 bn+2bn+1 2n+3 2n+1
即
=bn+2 bn
,∴2n+1 2n+3
=b2n+1 b2n-1
<1,∴b2n+1<b2n-14n-1 4n+1
由
=bn+2 bn
及b1=1,b2=2n+1 2n+3
可得:b2n=1 3
•1 3
•…•5 7
,b2n+1=4n-3 4n-1
•3 5
•…•7 9 4n-1 4n+1
∵
<4n-3 4n-1
,∴b2n<b2n+1(10分)4n-1 4n+1
②由bnbn+1=1 2
=an+1
得1 2n+1
=2n+1,1 bnbn+1
=2n+31 bn+2bn+1
相减得bn+1=
(1 2
-1 bn+2
)1 bn
由①知:bn≠bn+1
所以b1+b2+b3+…bn=1+
(1 2
-1 b3
+1 b1
-1 b4
+…1 b2
-1 bn+1
)=1+1 bn-1
(-1 2
-1 b1
+1 b2
+1 bn+1
)=-1+1 bn
(1 2
+1 bn+1
)>-1+1 bn
=1 bn+1 1 bn
-1(14分)2n+1