问题 解答题
已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*
(1)若数列{an} 满足
1
an+1
=f′(
1
an
)
,且a1=4,求数列{an} 的通项公式;
(2)若数列{bn}满足:b1=1,bnbn+1=
1
2
an+1
,当n≥3,n∈N*时,求证:①b2nb2n+1b2n-1(n∈N*);②b1+b2+b3+…bn
2n+1
-1
答案

(1)求导函数可得f′(x)=2ax+b,由题意知b=2n,16n2a-4nb=0

∴a=

1
2
,b=2n,则f(x)=
1
2
x2+2nx,n∈N*.             (2分)

∵数列{an} 满足

1
an+1
=f′(
1
an
),f′(x)=x+2n,

1
an+1
=
1
an
+2n,∴
1
an+1
-
1
an
=2n

∵a1=4,

1
an+1
-
1
4
=2+4+…+2(n-1)=n2-n

1
an
=(n-
1
2
)2

an=

4
(2n-1)2
   (6分)

(2)证明:①由b1=1得b2=

1
3
,由bnbn+1=
1
2
an+1
=
1
2n+1
bnbn+1
bn+2bn+1
=
2n+3
2n+1

bn+2
bn
=
2n+1
2n+3
,∴
b2n+1
b2n-1
=
4n-1
4n+1
<1
,∴b2n+1<b2n-1

bn+2
bn
=
2n+1
2n+3
及b1=1,b2=
1
3
可得:b2n=
1
3
5
7
•…•
4n-3
4n-1
b2n+1=
3
5
7
9
•…•
4n-1
4n+1

4n-3
4n-1
4n-1
4n+1
,∴b2n<b2n+1(10分)

②由bnbn+1=

1
2
an+1
=
1
2n+1
1
bnbn+1
=2n+1,
1
bn+2bn+1
=2n+3

相减得bn+1=

1
2
(
1
bn+2
-
1
bn
)

由①知:bn≠bn+1

所以b1+b2+b3+…bn=1+

1
2
(
1
b3
-
1
b1
+
1
b4
-
1
b2
+…
1
bn+1
-
1
bn-1
)=1+
1
2
(-
1
b1
-
1
b2
+
1
bn+1
+
1
bn
)
=-1+
1
2
(
1
bn+1
+
1
bn
)
>-1+
1
bn+1
1
bn
=
2n+1
-1
(14分)

单项选择题 A1/A2型题
单项选择题