问题
解答题
A县和B县春季分别急需化肥100吨和60吨,C县和D县分别储存化肥110吨和50吨,全部调配给A县和B县.运费如下表所示:
(2)求总运费W(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围; (3)求最低总运费,并说明运费最低时的运送方案. |
答案
(1)从C县运往B县的化肥:(110-x),
从D县运往A县的化肥:(100-x),
从D县运往B县的化肥:50-(100-x)=(x-50);
(2)w=40x+35(110-x)+45(100-x)+50(x-50)=10x+5850,
A县的化肥全从C县运进,则x=100,
D县的化肥全运往A县,则x=100-50=50,
所以自变量x的取值范围是50≤x≤100;
(3)w与x成一次函数,k=10>0,w随x的增大而增大,
∵50≤x≤100,
∴x=50时,w最小,
w=10×50+5850=6350(元),
从C县运到A县的化肥为50吨,从C县运往B县的化肥为110-50=60吨,从D县运往A县的化肥为100-50=50吨,D县的化肥全运往A县.