问题 解答题

甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,每天甲、乙两人共加工35个零件,设甲每天加工x个.

(1)直接写出乙每天加工的零件个数(用含x的代数式表示);

(2)求甲、乙每天各加工多少个;

(3)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值、最小值.

答案

(1)根据题意,每天甲、乙两人共加工35个零件,

设甲每天加工x个,则乙每天加工35-x;

(2)由(1)得结论,根据题意,

易得

60
x
=
80
35-x

解得x=15

经检验,x=15是原方程的解,且符合题意.

35-15=20

答:甲每天加工15个,乙每天加工20个;

(3)P=15m+20(m-1)

即P=35m-20

∵在P=35m-20中,P是m的一次函数,k=35>0,P随m的增大而增大

又由已知得:3≤m≤5

∴当m=5时,P最大值=155

当m=3时,P最小值=85.

选择题
单项选择题 A1/A2型题