问题
解答题
已知等差数列{an}为递增数列,满足a32=5a1+5a5-25,在等比数列{bn}中,b3=a2+2,b4=a3+5,b5=a4+13. (Ⅰ)求数列{bn}的通项公式bn; (Ⅱ)若数列{bn}的前n项和为Sn,求证:数列{Sn+
|
答案
(Ⅰ)∵a32=5a1+5a5-25
∴a32=10a3-25
∴(a3-5)2=0
∴a3=5
设等差数列{an}的公差为d,等比数列{bn}的公比为q,则
∵b3=a2+2,b4=a3+5,b5=a4+13,
∴(a3+5)2=(a2+2)(a4+13)
∴100=(7-d)(18+d)
∴d2+11d-26=0
∴d=2或d=-13(数列递增,舍去)
∴b3=a2+2=5,b4=a3+5=10,
∴q=2
∴bn=b3qn-3=5•2n-3;
(Ⅱ)证明:Sn=
=
(1-2n)5 4 1-2
•2n-5 4 5 4
∴Sn+
=5 4
•2n5 4
∴
=Sn+1+ 5 4 Sn+ 5 4
=2
•2n+15 4
•2n5 4
∴数列{Sn+
}是以5 4
为首项,2 为公比的等比数列.5 2