问题 解答题
已知数列{an}中,a1=
2
3
a2=
8
9
.当n≥2时,3an+1=4an-an-1(n∈N*
(1)证明:{an+1-an}为等比数列;
(2)求数列{an}的通项;
(3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn
答案

(1)由题意,当n≥2,3an+1=4an-an-1⇒3an+1-3an=an-an-1

所以an+1-an=

1
3
(an-an-1),

所以{an+1-an}是以a2-a1=

2
9
为首项,
1
3
为公比的等比数列.

(2)由(1)得an+1-an=

2
9
(
1
3
)n-1an-an-1=
2
9
(
1
3
)n-2a2-a1=
2
9
(
1
3
)0

累加得an-a1=1-(

1
3
)n,得an=1-(
1
3
)n

(3)bn=n-

n
3n

Sn=(1-

1
3
)+(2-
2
32
)+…+(n-
n
3n
)

=(1+2+…+n)-(

1
3
+
2
32
+…+
n
3n
)=-
3
4
+
2n+3
4•3n
+
n(n+1)
2

单项选择题
单项选择题 A1/A2型题