问题
解答题
已知数列{an}中,a1=
(1)证明:{an+1-an}为等比数列; (2)求数列{an}的通项; (3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn. |
答案
(1)由题意,当n≥2,3an+1=4an-an-1⇒3an+1-3an=an-an-1
所以an+1-an=
(an-an-1),1 3
所以{an+1-an}是以a2-a1=
为首项,2 9
为公比的等比数列.1 3
(2)由(1)得an+1-an=
(2 9
)n-1,an-an-1=1 3
(2 9
)n-2…a2-a1=1 3
(2 9
)01 3
累加得an-a1=1-(
)n,得an=1-(1 3
)n1 3
(3)bn=n-n 3n
Sn=(1-
)+(2-1 3
)+…+(n-2 32
)n 3n
=(1+2+…+n)-(
+1 3
+…+2 32
)=-n 3n
+3 4
+2n+3 4•3n n(n+1) 2