问题
解答题
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数. (Ⅰ)用xn表示xn+1; (Ⅱ)若x1=4,记an=lg
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3. |
答案
(Ⅰ)由题可得f′(x)=2x.
所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).
即y-(xn2-4)=2xn(x-xn).
令y=0,得-(xn2-4)=2xn(xn+1-xn).
即xn2+4=2xnxn+1.
显然xn≠0,∴xn+1=
+xn 2
.2 xn
(Ⅱ)由xn+1=
+xn 2
,知xn+1+2=2 xn
+xn 2
+2=2 xn
,(xn+2)2 2xn
同理xn+1-2=
,故(xn-2)2 2xn
=(xn+1+2 xn+1-2
)2.xn+2 xn-2
从而lg
=2lgxn+1+2 xn+1-2
,即an+1=2an.所以,数列{an}成等比数列.xn+2 xn-2
故an=2n-1a1=2n-1lg
=2n-1lg3.x1+2 x1-2
即lg
=2n-1lg3.xn+2 xn-2
从而
=32n-1xn+2 xn-2
所以xn=2(32n-1+1) 32n-1-1
(Ⅲ)由(Ⅱ)知xn=
,2(32n-1+1) 32n-1-1
∴bn=xn-2=
>04 32n-1-1
∴
=bn+1 bn
=32n-1-1 32n-1
<1 32n-1+1
≤1 32n-1
=1 321-1 1 3
当n=1时,显然T1=b1=2<3.
当n>1时,bn<
bn-1<(1 3
)2bn-2<<(1 3
)n-1b11 3
∴Tn=b1+b2+…+bn<b1+
b1+…+(1 3
)n-1b1=1 3
=3-3•(b1[1-(
)n]1 3 1- 1 3
)n<3.1 3
综上,Tn<3(n∈N*).