问题 解答题
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2
xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
答案

(Ⅰ)由题可得f′(x)=2x.

所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).

即y-(xn2-4)=2xn(x-xn).

令y=0,得-(xn2-4)=2xn(xn+1-xn).

即xn2+4=2xnxn+1

显然xn≠0,∴xn+1=

xn
2
+
2
xn

(Ⅱ)由xn+1=

xn
2
+
2
xn
,知xn+1+2=
xn
2
+
2
xn
+2=
(xn+2)2
2xn

同理xn+1-2=

(xn-2)2
2xn
,故
xn+1+2
xn+1-2
=(
xn+2
xn-2
)2

从而lg

xn+1+2
xn+1-2
=2lg
xn+2
xn-2
,即an+1=2an.所以,数列{an}成等比数列.

an=2n-1a1=2n-1lg

x1+2
x1-2
=2n-1lg3.

lg

xn+2
xn-2
=2n-1lg3.

从而

xn+2
xn-2
=32n-1

所以xn=

2(32n-1+1)
32n-1-1

(Ⅲ)由(Ⅱ)知xn=

2(32n-1+1)
32n-1-1

bn=xn-2=

4
32n-1-1
>0

bn+1
bn
=
32n-1-1
32n-1
=
1
32n-1+1
1
32n-1
1
321-1
=
1
3

当n=1时,显然T1=b1=2<3.

当n>1时,bn

1
3
bn-1<(
1
3
)2bn-2<<(
1
3
)n-1b1

∴Tn=b1+b2+…+bnb1+

1
3
b1+…+(
1
3
)n-1b1=
b1[1-(
1
3
)
n
]
1-
1
3
=3-3•(
1
3
)n<3

综上,Tn<3(n∈N*).

判断题
名词解释