问题
选择题
若函数y=x2-4x+6的定义域、值域都是[2,2b](b>1),则( )
|
答案
∵f(x)=x2-4x+6的对称轴为x=2
∴f(x)在[2,2b]单调递增
∵定义域,值域都是闭区间[2,2b],
∴f(2b)=2b
即4b2-8b+6=2b
解得b=
,或b=1(舍)3 2
综上b=3 2
故答案为 A
若函数y=x2-4x+6的定义域、值域都是[2,2b](b>1),则( )
|
∵f(x)=x2-4x+6的对称轴为x=2
∴f(x)在[2,2b]单调递增
∵定义域,值域都是闭区间[2,2b],
∴f(2b)=2b
即4b2-8b+6=2b
解得b=
,或b=1(舍)3 2
综上b=3 2
故答案为 A