已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R). (Ⅰ)若函数f(x)的图象过点(-2,1),且方程f(x)=0有且只有一个根,求f(x)的表达式; (Ⅱ)在(Ⅰ)的条件下,当x∈[-1,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围; (Ⅲ)若函数f(x)为偶函数,且
|
(Ⅰ)因为f(-2)=1,即4a-2b+1=1,所以b=2a.…(1分)
因为方程f(x)=0有且只有一个根,即△=b2-4a=0.
所以4a2-4a=0.即a=1,b=2.…(2分)
所以f(x)=(x+1)2.…(3分)
(Ⅱ)因为g(x)=f(x)-kx=x2+2x+1-kx=x2-(k-2)x+1=(x-
)2+1-k-2 2
. …(5分)(k-2)2 4
所以当
≥2或k-2 2
≤-1时,k-2 2
即k≥6或k≤0时,g(x)是单调函数. …(7分)
(Ⅲ)因为f(x)为偶函数,所以b=0.
所以f(x)=ax2+1.
所以F(x)=
…(8分)ax2+1,x>0 -ax2-1,x<0
因为mx<0,不妨设m>0,则n<0.
又因为m+n>0,所以m>-n>0.
所以|m|>|-n|.…(9分)
此时F(m)+F(n)=f(m)-f(n)=am2+1-an2-1=a(m2-n2)>0.
所以F(m)+F(n)>0. …(10分)