问题
选择题
设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是( )
|
答案
由x1<x2,x1+x2=0可得x1<0<-x1
由f(x1)>f(x2),可得f(x1)>f(-x1)
∴-x1离对称轴比x1离对称轴近
∴-
>02a-1 2
∴a<1 2
故选D
设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是( )
|
由x1<x2,x1+x2=0可得x1<0<-x1
由f(x1)>f(x2),可得f(x1)>f(-x1)
∴-x1离对称轴比x1离对称轴近
∴-
>02a-1 2
∴a<1 2
故选D