问题 解答题
已知等差数列{
an
n
}
满足a1=1,a3=6,若对任意的n∈N*,数列{bn}满足bn,2an+1,bn+1依次成等比数列,且b1=4.
(1)求an,bn
(2)设Sn=(-1)b1+(-1)2b2+…+(-1)nbn,n∈N*,证明:对任意的n∈N*,|Sn|>
1
2
bn
答案

(1)设数列{

an
n
}的公差d,依题意该数列的第一项为
a1
1
=1,第三项为
a3
3
=2

∴2=1+(3-1)d,d=

1
2

an
n
=1+(n-1)×
1
2

an=

1
2
n(n+1),

∵bn,2an+1,bn+1依次成等比数列,且b1=4.

∴bn•bn+1=4an+12

∴bn•bn+1=(n+2)2(n+1)2

bn
(n+1)2
bn+1
(n+1+1)2
=1,n∈N*

cn=

bn
(n+1)2

则cncn+1=1,∴cn+1=

1
cn
,且cn≠0.

c1=

b1
4
=
4
4
=1

cn=

1
cn-1
=cn-2=
1
cn-3
=…=c2=
1
c1
=1,

cn=

bn
(n+1)2
=1,

∴bn=(n+1)2

(2)当n是偶数时,

Sn=(-1)•b1+(-1)2•b2+…+(-1)nbn

=-22+32-42+52-62+72-…-n2+(n+1)2

=5+9+13+…+(2n+1)

=

n2+3n
2

|Sn| -

1
2
bn=
n2+3n
2
-
n2+2n+1
2
=
n-1
2
>0

|Sn| >

1
2
bn

当n是奇数时,

Sn=(-1)•b1+(-1)2•b2+…+(-1)nbn

=-22+32-42+52-62+72-82+…+n2-(n+1)2

=5+9+13+…+(2n-1)-(n+1)2

=

-n2-3n-4
2

|Sn| -

1
2
bn=
n2+3n+4
2
-
n2+2n+1
2
n+3
2
>0

|Sn| >

1
2
bn

综上所述,对任意的n∈N*|Sn|>

1
2
bn

单项选择题
判断题