问题
解答题
已知等差数列{
(1)求an,bn (2)设Sn=(-1)b1+(-1)2b2+…+(-1)nbn,n∈N*,证明:对任意的n∈N*,|Sn|>
|
答案
(1)设数列{
}的公差d,依题意该数列的第一项为an n
=1,第三项为a1 1
=2,a3 3
∴2=1+(3-1)d,d=
.1 2
∴
=1+(n-1)×an n
,1 2
∴an=
n(n+1),1 2
∵bn,2an+1,bn+1依次成等比数列,且b1=4.
∴bn•bn+1=4an+12,
∴bn•bn+1=(n+2)2(n+1)2,
∴
•bn (n+1)2
=1,n∈N*.bn+1 (n+1+1)2
令cn=
,bn (n+1)2
则cncn+1=1,∴cn+1=
,且cn≠0.1 cn
∵c1=
=b1 4
=1,4 4
∴cn=
=cn-2=1 cn-1
=…=c2=1 cn-3
=1,1 c1
∴cn=
=1,bn (n+1)2
∴bn=(n+1)2.
(2)当n是偶数时,
Sn=(-1)•b1+(-1)2•b2+…+(-1)nbn
=-22+32-42+52-62+72-…-n2+(n+1)2
=5+9+13+…+(2n+1)
=
.n2+3n 2
∴|Sn| -
bn=1 2
-n2+3n 2
=n2+2n+1 2
>0,n-1 2
∴|Sn| >
bn.1 2
当n是奇数时,
Sn=(-1)•b1+(-1)2•b2+…+(-1)nbn
=-22+32-42+52-62+72-82+…+n2-(n+1)2
=5+9+13+…+(2n-1)-(n+1)2
=-n2-3n-4 2
∴|Sn| -
bn=1 2
-n2+3n+4 2
═n2+2n+1 2
>0,n+3 2
∴|Sn| >
bn.1 2
综上所述,对任意的n∈N*,|Sn|>
bn.1 2