问题
解答题
设{an}是公比为q的等比数列.
(Ⅰ)试推导{an}的前n项和公式;
(Ⅱ) 设q≠1,证明数列{an+1}不是等比数列.
答案
(I)当q=1时,Sn=na1;
当q≠0,1时,由Sn=a1+a2+…+an,
得qSn=a1q+a2q+…+an-1q+anq.
两式错位相减得(1-q)Sn=a1+(a2-a1q)+…+(an-an-1q)-anq,(*)
由等比数列的定义可得
=a2 a1
=…=a3 a2
=q,an an-1
∴a2-a1q=a3-a2q=…=0.
∴(*)化为(1-q)Sn=a1-anq,
∴Sn=
=a1-anq 1-q
=a1-a1qn 1-q
.a1(1-qn) 1-q
∴Sn=
;na1, (q=1)
,a1(1-qn) 1-q (q≠1)
(Ⅱ)用反证法:设{an}是公比为q≠1的等比数列,数列{an+1}是等比数列.
①当存在n∈N*,使得an+1=0成立时,数列{an+1}不是等比数列.
②当∀n∈N*(n≥2),使得an+1≠0成立时,则
=an+1+1 an+1
=a1qn+1 a1qn-1+1
,a1q+1 a1+1
化为(qn-1-1)(q-1)=0,
∵q≠1,∴q-1≠0,qn-1-1≠0,故矛盾.
综上两种情况:假设不成立,故原结论成立.