问题
解答题
数列{an}的前n项和Sn满足:t(Sn+1+1)=(2t+1)S n n∈N*. (1)求证{an}是等比数列; (2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(
(3)定义数列{cn}为:cn=
|
答案
(1)由:t(Sn+1+1)=(2t+1)Sn,
得t(Sn+1)=(2t+1)Sn-1,
相减得:
=2+an+1 an
,1 t
∴{an}是等比数列.
(2)bn+1=f(
)=2+bn,1 bn
∴bn+1-bn=2,b1=1,
得bn=2n-1.
(3)cn=
=1 bn+1bn
=1 (2n+1)(2n-1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=
[(1-1 2
)+(1 3
-1 3
)++(1 5
-1 2n-1
)=1 2n+1
(1-1 2
).1 2n+1
∴
Tn=lim n→∞
.(5分)1 2