问题 解答题

已知等差数列{an}的公差为d,a3=5,a5=9,等比数列{bn}的公比为q,b1=1,b4=27,设Sn=a1b1+a2b2+a3b3+…+anbn,Tn=a1b1-a2b2+a3b3-…+(-1)n-1anbn(n∈N+).

(1)求S3和T3的值;

(2)设f(n)=(1-q)S2n-(1+q)T2n,求f(n)的表达式.

答案

(1)∵a5=a3+2d,a3=5,a5=9,∴9=5+2d,解得d=2,∴an=a3+(n-3)d=5+(n-3)×2=2n-1,∴S3=1×1+3×3+5×9=55;

b4=b1q3,b1=1,b4=27,∴27=q3,解得q=3,∴bn=3n-1,∴T3=1×1-3×3+5×32=37.

(2)①∵Sn=1×1+3×31+5×32+…+(2n-1)•3n-1

3Sn=1×3+3×32+…+(2n-3)•3n-1+(2n-1)•3n

∴-2Sn=1+2×3+2×32+…+2×3n-1-(2n-1)•3n=1+2×

3×(3n-1-1)
3-1
-(2n-1)•3n

得Sn=-

1
2
-
3n-3
2
+
(2n-1)•3n
2
=(n-1)•3n+1,

∴S2n=(2n-1)•32n+1.

②T2n=1×1-3×3+5×32-7×33+…+(4n-3)•32n-2-(4n-1)•32n-1

=-8-16×32-…-8n•32n-2

=-8(1×30+2×32+3×34+…+n•32n-2

=-8•(

32n-1
-16
+
n•32n
8
)

=

32n-1
2
-n•32n

∴f(n)=(1-3)•[(2n-1)•32n+1]-4×(

32n-1
2
-n•32n)=(2-4n)•32n+2-4n-2•32n+2+4n•32n=4

单项选择题
名词解释