(1)由题意得an=,(k∈Z+)
(2)当0<a1<1时,a2=a1+1,a3=a1+2,a4=a1+3,
a5=+1,a6=+2,a7=+3,a3k-1=+1,a3k=+2,a3k+1=+3
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100)
=a1+(3a1+6)+(a1+6)+(+6)++(+6)
=a1+a1(3+1+++)+6×33
=(11-)a1+198
(3)当d=3m时,a2=a1+,
∵a3m=a1+=a1-+3<3<a1+3=a 3m+1,
∴a3m+2=+;
∵a6m=-+3<3<+3=a6m+1
∴a6m+2=+;
∵a9m=-+3<3<+3=a9m+1,
∴a9m+2=+,
∴a2-=a1,a3m+2-=,a6m+2-=,
∴a9m+2-=
综上所述,当d=3m时,数列a2-,a3m+2-,a6m+2-,a9m+2-
是公比为的等比数列
当d≥3m+1时,a3m+2=∈(0,),
a6m+2=+3∈(3,3+),
a6m+3=∈(0,),
a9m+2=+∈(3-,3),
由于a3m+2-<0,a6m+2->0,a9m+2->0
故数列a2-,a3m+2-,a6m+2-,a9m+2-,不是等比数列
所以,数列a2-,a3m+2-,a6m+2-,a9m+2-,
成等比数列当且仅当d=3m