问题 解答题
已知数列{an}的前n项和为SnSn=
1
3
(an-1)(n∈N*).

(Ⅰ)求a1,a2
(Ⅱ)求证数列{an}是等比数列.
答案

(Ⅰ)由S1=

1
3
(a1-1),得a1=
1
3
(a1-1)

∴a1=-

1
2

S2=

1
3
(a2-1),即a1+a2=
1
3
(a2-1)
,得a2=
1
4

(Ⅱ)当n>1时,an=Sn-Sn-1=

1
3
(an-1)-
1
3
(a n-1-1),

an
an-1
=-
1
2
,所以{an}是首项-
1
2
,公比为-
1
2
的等比数列.

写作题
选择题