问题
解答题
已知数列{an}的前n项和为Sn,Sn=
(Ⅰ)求a1,a2; (Ⅱ)求证数列{an}是等比数列. |
答案
(Ⅰ)由S1=
(a1-1),得a1=1 3
(a1-1)1 3
∴a1=-1 2
又S2=
(a2-1),即a1+a2=1 3
(a2-1),得a2=1 3
.1 4
(Ⅱ)当n>1时,an=Sn-Sn-1=
(an-1)-1 3
(a n-1-1),1 3
得
=-an an-1
,所以{an}是首项-1 2
,公比为-1 2
的等比数列.1 2