问题 解答题

已知f(x)=log2(x+m),m∈R

(1)如果f(1),f(2),f(4)成等差数列,求m的值;

(2)如果a,b,c是两两不等的正数,且a,b,c依次成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.

答案

(1)∵f(1),f(2),f(4)成等差数列,

∴f(1)+f(4)=2f(2).

即log2(1+m)+log2(4+m)=log2(2+m)2

∴(m+1)(m+4)=(m+2)2

即m2+5m+4=m2+4m+4

∴m=0

(2)∵f(a)+f(c)=log2(a+m)+log2(c+m)=log2[(a+m)(c+m)],

2f(b)=2log2(b+m)=log2(b+m)2

∵a,b,c成等比数列,

∴b2=ac

∵(a+m)(c+m)-(b+m)2

=ac+am+cm+m2-b2-2bm-m2

=ac+m(a+c)-b2-2bm

=m(a+c)-2m

ac

∵a>0,c>0.

∴a+c≥2

ac

①m>0时,(a+m)(c+m)-(b+m)2>0,

∴log2[(a+m)(c+m)>log2(b+m)2

∴f(a)+f(c)>2f(b);

②m<0时,(a+m)(c+m)-(b+m)2<0,

∴log2[(a+m)(c+m)]<log2(b+m)2

∴f(a)+f(c)<2f(b);

③m=0时,(a+m)(c+m)-(b+m)2=0

∴log2[(a+m)(c+m)]=log2(b+m)2

∴f(a)+f(c)=2f(b).

填空题
填空题