问题
解答题
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*,
(Ⅰ)证明:数列{an-n}是等比数列;
(Ⅱ)设bn=nan-n2-n,求数列{bn}的前n项和Sn;
答案
(Ⅰ)证明:由题设an+1=4an-3n+1,
得an+1-(n+1)=4(an-n),n∈N+
又a1-1=1≠0∴
=4an+1-(n+1) an-n
∴数列{an-n}是首项为1,且公比为4的等比数列
(Ⅱ)由(1)可知an-n=4n-1
而bn=n(an-n)-n=n•4n-1-n
∴Sn=1•40+2•41+3•42+n•4n-1-(1+2+3+n)Tn
=1•40+2•41+3•42+n•4n-1①
4Tn=1•41+2•42+3•43+(n-1)•4n-1+n•4n②
由①-②得:-3Tn=1+4+42+4n-1-n•4n=
-n•4n=1-4n 1-4
-n•4n4n-1 3
∴Tn=
+1-4n 9
=n•4n 3
+(1 9
-n 3
)•4n1 9
=
+(3n-1)•4n 9
=1 9
Sn=(3n-1)•4n+1 9
-(3n-1)•4n+1 9 n(n+1) 2