问题
解答题
已知数列{an}的首项a1=b(b≠0),它的前n项的和Sn=a1+a2+…+an(n≥1),并且S1,S2,Sn,…是一个等比数列,其公比为p(p≠0且|p|<1), (1)证明:a2,a3,a3,…an,…(即{an}从第二项起)是一个等比数列; (2)设Wn=a1S1+a2S2+a3S3+…+anSn(n≥1),求
|
答案
(1)证明:由已知条件得S1=a1=b.
Sn=S1pn-1=bpn-1(n≥1)
因为当n≥2时,Sn=a1+a2++an-1+an=Sn-1+an,所以
an=Sn-Sn-1=bpn-2(p-1)(n≥2)
从而
=an+1 an
=p(n≥2),bpn-1(p-1) bpn-2(p-1)
因此a2,a3,a3,an,是一个公比为p的等比数列
(2)当n≥2时,
=an+1Sn+1 anSn
=p2,bpn-1(p-1)bpn bpn-2(p-1)bpn-1
且由已知条件可知p2<1,
因此数列a1S1,a2S2,a3S3,anSn是公比为p2<1的无穷等比数列,于是
(a2S2+a3S3++anSn)=lim n→∞
=a2S2 1-p2
=-b2(p-1)p 1-p2
.b2p 1+p
从而
Wn=lim n→∞
(a1S1+a2S2+a3S3++anSn)lim n→∞
=
a1S1+lim n→∞
(a2S2+a3S3++anSn)lim n→∞
=b2-
=b2p 1+p
.b2 1+p