问题
解答题
在数列{an}中,已知a1=2,an+1=4an-3n+1,n∈N•.
(1)设bn=an-n,求证:数列{bn}是等比数列;
(2)求数列{an}的前n项和Sn.
答案
(1)∵
=bn+1 bn
=an+1-(n+1) an-n
=4an-3n+1-(n+1) an-n
=4,(5分)4(an-n) an-n
且b1=a1-1=1∴bn为以1为首项,以4为公比的等比数列,(7分)
(2)由(1)得bn=b1qn-1=4n-1(8分)∵an=bn+n=4n-1+n,(9分)
∴Sn=(40+41+42++4n-1)+(1+2+3++n)
=
,(12分)
+1-4n 1-4
=n(n+1) 2
+4n-1 3 n(n+1) 2