问题
解答题
设数列{an},a1=
(1)求证:{an-
(2)求an; (3)求{an}的前n项和Sn. |
答案
(1)证明:∵α+β=
,αβ=an an-1
代入3α-αβ+3β=1得an=1 an-1
an-1+1 3
,1 3
∴
=an- 1 2 an-1- 1 2
=
an-1+1 3
-1 3 1 2 an-1- 1 2
为定值.1 3
∴数列{an-
}是等比数列.1 2
(2)∵a1-
=1 2
-5 6
=1 2
,1 3
∴an-
=1 2
×(1 3
)n-1=(1 3
)n.1 3
∴an=(
)n+1 3
.1 2
(3)Sn=(
+1 3
++1 32
)+1 3n
=n 2
+
(1-1 3
)1 3n 1- 1 3
=n 2
-n+1 2
.1 2×3n