问题 解答题
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)•g(bn)=f(
b n
)(n∈N*)

(I)求an并证明数列{bn-1}是等比数列;
(II)若数列{cn}满足cn=
an
4n-1•(bn-1)
,证明:c1+c2+c3+…+cn<3.
答案

(I)因为点(an+1,S2n-1)在函数f(x)的图象上,所以an2=S2n-1

令n=1,n=2,可得a12=S1,a22=S3

a12=a1(a1+d)2=3a1+3d

∴a1=1,d=2(d=-1舍去)

∴an=2n-1;

(bn-bn+1)•g(bn)=f(

b n
)(n∈N*)

4(bn-bn+1)•(bn-1)=(bn-1)2(n∈N*)

bn+1-1
bn-1
=
3
4

∴数列{bn-1}是以1为首项,

3
4
为公比的等比数列;

(II)证明:由上知bn-1=(

3
4
)n-1

cn=

an
4n-1•(bn-1)
=
2n-1
3n-1

令Tn=c1+c2+c3+…+cn

则Tn=

1
30
+
3
31
+…+
2n-1
3n-1

1
3
Tn=
1
31
+
3
32
+…+
2n-3
3n-1
+
2n-1
3n

①-②得

2
3
Tn=
1
30
+
2
31
+
2
32
+…+
2
3n-1
-
2n-1
3n
2-
2(n+1)
3n

∴Tn=3-

n+1
3n-1
<3

即c1+c2+c3+…+cn<3.

选择题
单项选择题