问题
解答题
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)•g(bn)=f(
(I)求an并证明数列{bn-1}是等比数列; (II)若数列{cn}满足cn=
|
答案
(I)因为点(an+1,S2n-1)在函数f(x)的图象上,所以an2=S2n-1,
令n=1,n=2,可得a12=S1,a22=S3,
∴a12=a1,(a1+d)2=3a1+3d
∴a1=1,d=2(d=-1舍去)
∴an=2n-1;
∵(bn-bn+1)•g(bn)=f(
)(n∈N*)b n
∴4(bn-bn+1)•(bn-1)=(bn-1)2(n∈N*)
∴
=bn+1-1 bn-1 3 4
∴数列{bn-1}是以1为首项,
为公比的等比数列;3 4
(II)证明:由上知bn-1=(
)n-13 4
∴cn=
=an 4n-1•(bn-1) 2n-1 3n-1
令Tn=c1+c2+c3+…+cn,
则Tn=
+1 30
+…+3 31
①2n-1 3n-1
∴
Tn=1 3
+1 31
+…+3 32
+2n-3 3n-1
②2n-1 3n
①-②得
Tn=2 3
+1 30
+2 31
+…+2 32
-2 3n-1
2-2n-1 3n 2(n+1) 3n
∴Tn=3-
<3n+1 3n-1
即c1+c2+c3+…+cn<3.