问题
解答题
如图,△OBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),an=
(Ⅰ)求a1,a2,a3及an; (Ⅱ)证明yn+4=1-
(Ⅲ)若记bn=y4n+4-y4n,n∈N*,证明{bn}是等比数列. |
答案
(Ⅰ)因为y1=y2=y4=1,y3=
,y5=1 2
,3 4
所以a1=a2=a3=2,又由题意可知yn-3=yn+yn+1 2
∴an+1=
y n+1+yn+2+yn+31 2
=
yn+1+yn+2+1 2 y n+yn+1 2
=
yn+yn+1+yn+2=an,1 2
∴{an}为常数列
∴an=a1=2,n∈N*.
(Ⅱ)将等式
yn+yn+1+yn+2=2两边除以2,得1 2
yn+1 4
=1,yn+1+yn+2 2
又∵yn+4=y n+1+yn+2 2
∴yn+4=1-
.yn 4
(Ⅲ)∵bn-1=y4n+3-y4n+4=(1-
)-(1-y4n+4 4
)y4n 4
=-
(y4n+4-y4n)1 4
=-
bn,1 4
又∵b1=y3-y4=-
≠0,1 4
∴{bn}是公比为-
的等比数列.1 4