已知数列{an}(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33;
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
(3)设q≠1,Sn是等比数列{an}的前n项和,求:S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn
(1)a1C20-a2C21+a3C22=a1-2a1q+a1q2
=a1(1-q)2
a1C30-a2C31+a3C32-a4C33
=a1(1-q)2a1C30-a2C31+a3C32-a4C33
=a1-3a1q+3a1q2-a1q3
=a1(1-q)3;
(2)归纳概括的结论为:若数列{an}是首项为a1,公比为q的等比数列,
则a1Cn0-a2Cn1+a3Cn2-a4Cn3++(-1)nan+1Cnn=a1(1-q)n,n为正整数
证明:a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn
=a1Cn0-a1qCn1+a1q2Cn2-a1q3Cn3+…+(-1)na1qnCnn
=a1[Cn0-qCn1+q2Cn2-q3Cn3+…+(-1)nqnCnn]
=a1(1-q)n;
∴左边=右边,该结论成立.
(3)∵数列{an}(n为正整数)是首项是a1,公比为q的等比数列,而且q≠1.
∴Sn=
=a1-a1qn 1-q
,a1(1-qn) 1-q
∴S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn
=
[(1-q)cn0-(1-q2)cn1+(1-q3)cn2-(1-q4)cn3+…+(-1)n(1-qn+1)cnn]a1 1-q
=
[a1 1-q
-C 0n
+C 1n
-C 2n
++(-1)nC 3n
]-C nn
[a1q 1-q
-qC 0n
+q2C 1n
-q3C 2n
++(-1)nqnC 3n
]C nn
=
(1-q)n.a1q q-1