已知函数f(x)=ax+b,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],…当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中a,b为常数,a1=0,b1=1.
(Ⅰ)a=1时,求数列{an}与{bn}的通项;
(Ⅱ)设a>0且a≠1,若数列{bn}是公比不为1的等比数列,求b的值;
(Ⅲ)若a>0,设{an}与{bn}的前n项和分别记为Sn与Tn,求(T1+T1+…+Tn)-(S1+S2+…+Sn)的值.
(I)∵a=1,∴函数f(x)=ax+b在R上是增函数,
∴an=a•an-1+b=an-1+b,bn=a•bn-1+b=bn-1+b,(n≥2),
则数列{an}与{bn}都是公差为b的等差数列,
∵a1=0,b1=1,∴an=(n-1)b,bn=1+(n-1)b.
(Ⅱ)∵a>0,bn=a•bn-1+b,
∴
=a+bn bn-1
;b bn-1
由{bn}是等比数列,知
应为常数.b bn-1
{bn}是公比不为1的等比数列,则bn-1不是常数,
必有b=0.
(Ⅲ)∵a>0,an=a•an-1+b,bn=a•bn-1+b,
两式相减,得bn-an=a(bn-1-an-1),
∴{bn-an}成等比数列,公比为a,b1-a1=1,
∴bn-an=an-1.
Tn-Sn=(b1+b2+…+bn)-(a1+a2+…+an)=(b1-a1)+(b2-a2)+…+(bn-an)=n(a=1)
(a>0,a≠1)1-an 1-a
∴(T1+T1+…+Tn)-(S1+S2+…+Sn)=(T1-S1)+(T2-S2)+…+(Tn-Sn)=
(a=1)n(n+1) 2
(a≠1)an+1-(n+1)a+n (1-a)2