问题 解答题
已知a1,a2,a3,…,a30是首项为1,公比为2的等比数列.对于满足0<k<30的整数k,数列b1,b2,b3,…,b30bn=
an+k,1≤n≤30-k
an+k-30,30-k<n≤30
确定.记C=a1b1+a2b2+…+a30b30
(Ⅰ)当k=1时,求C的值;
(Ⅱ)求C最小时k的值.
答案

(Ⅰ)当k=1时,bn=

an+1,1≤n≤29
a1,n=30

∴C=a1b1+a2b2+…+a30b30=a1a2+a2a3+…+arar+1+…+a29a30+a30a1

=1×2+2×22+…+2r-1×2r+…+228×229+229×1

=2+23++22r-1++257+229

=

2(429-1)
4-1
+229=
1
3
×259+229-
2
3

(Ⅱ)C=a1b1+a2b2+…+akbk+…+a30b30

=1×2k+2×2k+1+…+2k-1×22k-1+…+229-k×229+230-k×1+231-k×2+…+229×2k-1

=

2k+2k+2++23k-2++258-k
共30-k项
+
230-k+232-k++228+k
共k项

=

2k(430-k-1)
4-1
+
230-k(4k-1)
4-1

=

1
3
(260-k-2k+230+k-230-k)

=

1
3
[230-k(230-1)+2k(230-1)]

=

230-1
3
(230-k+2k)≥
216(230-1)
3

当且仅当230-k=2k,即k=15时,C最小.

单项选择题
单项选择题 A1/A2型题