问题
解答题
已知a1,a2,a3,…,a30是首项为1,公比为2的等比数列.对于满足0<k<30的整数k,数列b1,b2,b3,…,b30由bn=
(Ⅰ)当k=1时,求C的值; (Ⅱ)求C最小时k的值. |
答案
(Ⅰ)当k=1时,bn=an+1,1≤n≤29 a1,n=30
∴C=a1b1+a2b2+…+a30b30=a1a2+a2a3+…+arar+1+…+a29a30+a30a1
=1×2+2×22+…+2r-1×2r+…+228×229+229×1
=2+23++22r-1++257+229
=
+229=2(429-1) 4-1
×259+229-1 3 2 3
(Ⅱ)C=a1b1+a2b2+…+akbk+…+a30b30
=1×2k+2×2k+1+…+2k-1×22k-1+…+229-k×229+230-k×1+231-k×2+…+229×2k-1
=
+2k+2k+2++23k-2++258-k 共30-k项 230-k+232-k++228+k 共k项
=
+2k(430-k-1) 4-1 230-k(4k-1) 4-1
=
(260-k-2k+230+k-230-k)1 3
=
[230-k(230-1)+2k(230-1)]1 3
=
(230-k+2k)≥230-1 3 216(230-1) 3
当且仅当230-k=2k,即k=15时,C最小.