问题
解答题
已知数列{an}满足:a1=1,an+1=
(I)求a2,a3; (II)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式; (Ⅲ)求数列{an}前20项中所有奇数项的和. |
答案
(Ⅰ)令n=1,得a2=
a1+1=1 2
,令n=2,得a3=a2-4=-3 2
.5 2
(II)b1=a2-2=-
,且1 2
=bn+1 bn
=a2n+2-2 a2n-2
=
a2n+1+(2n+1)-21 2 a2n-2
=
(a2n-2×2n)+2n-11 2 a2n-2
,是一个与n无关的常数.1 2
所以数列{bn}是等比数列,其通项公式bn=-(
)n1 2
(Ⅲ)由(II)可得a2n=2+bn.
数列{an}前20项中所有奇数项的和S=a1+a3+a5+…+a19=a1+
(a2-2×1)+1 2
(a4-2×2)+…+1 2
(a18-2×18)=1-(1+2+4+…18)+1 2
(a2+a4+…a18)1 2
=-90+
(2+b1+2+b2+…2+b9)=-90+1 2
(18+1 2
)=-90+9--
(1-1 2
)1 29 1- 1 2
+1 2
=1 210
-1 210 163 2