问题
填空题
若不等式 ax2+bx+4>0的解集为 {x|-2<x<1},则二次函数y=bx2+4x+a(0≤x≤3)的值域是______.
答案
∵不等式 ax2+bx+4>0的解集为 {x|-2<x<1},
∴a<0,-2和1是方程ax2+bx+4=0的两个实数根,
∴
,-2+1=- b a -2×1= 4 a
解得a=-2,b=-2,
∴二次函数y=bx2+4x+a(0≤x≤3)即为y=-2x2+4x-2(0≤x≤3),
∵y=-2x2+4x-2=-2(x-1)2,0≤x≤3,
∴x=1时,y=-2x2+4x-2=-2(x-1)2有最大值0,
x=3时,y=-2x2+4x-2=-2(x-1)2有最小值-8.
∴函数的值域是[-8,0].
故答案为:[-8,0].