问题
解答题
已知数列{an}的前n项和为{Sn},又有数列{bn}满足关系b1=a1,对n∈N*,有an+Sn=n,bn+1=an+1-an
(1)求证:{bn}是等比数列,并写出它的通项公式;
(2)是否存在常数c,使得数列{Sn+cn+1}为等比数列?若存在,求出c的值;若不存在,说明理由.
答案
(1)由an+Sn=n⇒a1+S1=1⇒a1=
,又1 2
(3分)
⇒2an+1=an+1an+1+Sn+1=n+1 an+Sn=n
∴
=bn+1 bn
=an+1-an an-an-1
=
-anan+1 2 an-(2an-1)
,1 2
∴数列{bn}为等比数列,且bn=(
)n(6分)1 2
(2)an+bn=an+an-an-1=2an-an-1,∴an+bn=1⇒an=1-(
)n(8分)1 2
∴Sn=n-an=n-1+(
)n⇒Sn-n+1=(1 2
)n(10分)1 2
依题意,存在c=-1,使得数列{Sn+cn+1}为等比数列. (12分)