问题
选择题
已知f (x)=x+1,g (x)=2x+1,数列{an}满足:a1=1,an+1=
|
答案
∵a2n+2=a2n+1+1=(2a2n+1)+1=2a2n+2,
∴a2n+2+2═2(a2n+2),
∴数列{a2n+2}是以2为公比、以a2=a1+1=2为首项的等比数列.
∴a2n+2=2×2n-1,
∴a2n=2n-2.
又a2n+a2n+1=a2n+2a2n+1=3a2n+1,
∴数列{an}的前2007项的和为
a1+(a2+a3)+(a4+a5)+(a6+a7)+…+(a2006+a2007)
=a1+(3a2+1)+(3a4+1)+(3a6+1)+…+(3a2006+1)
=1+(3×2-5)+(3×22-5)+(3×23-5)+…+(3×21003-5)
=1+(3×2-5)+(3×22-5)+(3×23-5)+…+(3×21003-5)
=3×(2+22+23+…+21003+1-5×1003
=6×(21003-1)+1-5×1003=6×21003-5020,
故选D