问题 解答题

已知数列{an}中,a1=-1,且 (n+1)an,(n+2)an+1,n 成等差数列.

(Ⅰ)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;

(Ⅱ)求{an}的通项公式;

(Ⅲ)(仅理科做) 若an-bn≤kn对一切n∈N*恒成立,求实数k的取值范围.

答案

(Ⅰ)证明:(n+2)an+1=

1
2
(n+1)an+
n
2
,…1分

∵b1=2a1-1+2=-1,…2分(文3分)

bn+1
bn
=
(n+2)an+1-(n+1)+2
(n+1)an-n+2
=
1
2
(n+1)an+
n
2
-(n+1)+2
(n+1)an-n+2
=
1
2
(n+1)an-
n
2
+1
(n+1)an-n+2
=
1
2

∴数列{bn}是等比数列. …4分(文6分)

(Ⅱ)由(Ⅰ)得bn=-(

1
2
)n-1,即(n+1)an-n+2=-(
1
2
)n-1

an=-

1
n+1
(
1
2
)n-1+
n-2
n+1
. …6分(文13分)

(Ⅲ)∵an-bn=

n
n+1
(
1
2
)n-1+
n-2
n+1

∴an-bn≤kn,即k ≥ 

1
n+1
(
1
2
)n-1+
n-2
n(n+1)

cn=

1
n+1
(
1
2
)n-1dn=
n-2
n(n+1)
en=
1
n+1
(
1
2
)n-1+
n-2
n(n+1)

则cn 随着n的增大而减小,…8分

dn+1-dn=

n-1
(n+1)(n+2)
-
n-2
n(n+1)
=
4-n
n(n+1)(n+2)

∴n≥5时,dn+1-dn<0,dn+1<dndn随着n的增大而减小,…10分

则n≥5时,en随着n的增大而减小. …

∵c1=

1
2
,c2=
1
6
,c3=
1
16
,c4=
1
40
,c5=
1
96

d1=-

1
2
,d2=0,d3=
1
12
,d4=
1
10
,d5=
1
10

∴e1=0,e2=

1
6
,e3=
7
48
,e4=
1
8
,e5=
53
480

则e1<e2>e3>e4>e5>….∴e2=

1
6
最大.

∴实数k的取值范围k≥

1
6
. …13分.

问答题 简答题
单项选择题