问题 解答题
已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
答案

(Ⅰ)(法一)在an2=S2n-1,令n=1,n=2可得

a12=S1
a22=S3

a12=a1
(a1+d)2=3a1+3d

∴a1=1,d=2

∴an=2n-1

∵bn=

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1

Tn=

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1

(法二)∵{an}是等差数列,

a1+a2n-1
2
=an

S2n-1=

a1+a2n-1
2
×(2n-1)=(2n-1)an

由an2=S2n-1,得an2=(2n-1)an

又an≠0,

∴an=2n-1

∵bn=

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1

Tn=

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1

(Ⅱ)∵T1=

1
3
,Tm=
m
2m+1
,Tn=
n
2n+1

若T1,Tm,Tn,成等比数列,则(

m
2m+1
)2=
1
3
(
n
2n+1
)

m2
4m2+4m+1
=
n
6n+3

法一:由

m2
4m2+4m+1
=
n
6n+3
可得,
3
n
=
-2m2+4m+1
m2
>0

即-2m2+4m+1>0

1-

6
2
<m<1+
6
2

∵m∈N且m>1

∴m=2,此时n=12

∴当且仅当m=2,n=12时,T1,Tm,Tn,成等比数

法二:∵

n
6n+3
=
1
6+
3
n
1
6

m
4m2+4m+1
1
6

∴2m2-4m-1<0

1-

6
2
<m<1+
6
2

∵m∈N且m>1

∴m=2,此时n=12

∴当且仅当m=2,n=12时,T1,Tm,Tn,成等比数

单项选择题 A3/A4型题
问答题 简答题