已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
(1)求数列{an}的通项公式和Tn; (2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由. |
(Ⅰ)(法一)在an2=S2n-1,令n=1,n=2可得a12=S1 a22=S3
即a12=a1 (a1+d)2=3a1+3d
∴a1=1,d=2
∴an=2n-1
∵bn=
=1 anan+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1
(1-1 2
)=1 2n+1 n 2n+1
(法二)∵{an}是等差数列,
∴
=ana1+a2n-1 2
∴S2n-1=
×(2n-1)=(2n-1)ana1+a2n-1 2
由an2=S2n-1,得an2=(2n-1)an,
又an≠0,
∴an=2n-1
∵bn=
=1 anan+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1
(1-1 2
)=1 2n+1 n 2n+1
(Ⅱ)∵T1=
,Tm=1 3
,Tn=m 2m+1 n 2n+1
若T1,Tm,Tn,成等比数列,则(
)2=m 2m+1
(1 3
)n 2n+1
即
=m2 4m2+4m+1 n 6n+3
法一:由
=m2 4m2+4m+1
可得,n 6n+3
=3 n
>0-2m2+4m+1 m2
即-2m2+4m+1>0
∴1-
<m<1+6 2 6 2
∵m∈N且m>1
∴m=2,此时n=12
∴当且仅当m=2,n=12时,T1,Tm,Tn,成等比数
法二:∵
=n 6n+3
<1 6+ 3 n 1 6
∴
<m 4m2+4m+1 1 6
∴2m2-4m-1<0
∴1-
<m<1+6 2 6 2
∵m∈N且m>1
∴m=2,此时n=12
∴当且仅当m=2,n=12时,T1,Tm,Tn,成等比数