问题
解答题
已知数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,{bn}为等差数列且各项均为正数,a1=1,an+1=2Sn+1(n∈N*),b1+b2+b3=15 (1)求数列{an}的通项公式; (2)若a1+b1,a2+b2,a3+b3成等比数列,求
|
答案
(1)a2=2S1+1=3=3a1,
当n≥2时,an+1-an=(2Sn+1)-(2Sn-1+1)=2an,(3分)
∴an+1=3an,即
=3,an+1 an
∴数列{an}是首项a1=1,公比为3的等比数列,(4分)
从而得:an=3n-1;(6分)
(2)设数列{bn}的公差为d(d>0),
∵T3=15,∴b2=5,
依题意a1+b1,a2+b2,a3+b3成等比数列,
则有(a2+b2)2=(a1+b1)(a3+b3),
又a2=3,b1=b2+d=5-d,b3=b2+d=5+d,
∴64=(5-d+1)(5+d+9),
解得:d=2或d=-10(舍去),(8分)
∵b1=5-d=5-2=3,
∴Tn=3n+
×2=n2+2n,(10分)n(n-1) 2
∵
=1 Tn
(1 2
-1 n
),1 n+2
则
+1 T1
+…+1 T2 1 Tn
=
[(1 2
+1 1
+…+1 2
)-(1 n
+1 3
+…+1 4
)]1 n+2
=
[(1 2
+1 1
)-(1 2
+1 n+1
)]=1 n+2
-3 4
.(13分)2n+3 2(n+1)(n+2)