问题 解答题
已知正项等差数列an的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
an
3n
,记数列bn的前n项和为Tn,求Tn
答案

(Ⅰ)∵S3=12,即a1+a2+a3=12,

∴3a2=12,所以a2=4.(1分)

又∵2a1,a2,a3+1成等比数列,

∴a22=2a1•(a3+1),即a22=2(a2-d)•(a2+d+1),(3分)

解得,d=3或d=-4(舍去),

∴a1=a2-d=1,故an=3n-2.(6分)

(Ⅱ)bn=

an
3n
=
3n-2
3n
=(3n-2)•
1
3n

Tn=1×

1
3
+4×
1
32
+7×
1
33
++(3n-2)×
1
3n
,①

①×

1
3
1
3
Tn=1×
1
32
+4×
1
33
+7×
1
34
++(3n-5)×
1
3n
+(3n-2)×
1
3n+1
.②

①-②得

2
3
Tn=
1
3
+3×
1
32
+3×
1
33
+3×
1
34
++3×
1
3n
-(3n-2)×
1
3n+1
=
1
3
+3×
1
32
(1-
1
3n-1
)
1-
1
3
-(3n-2)×
1
3n+1
=
5
6
-
1
2
×
1
3n-1
-(3n-2)×
1
3n+1
,(10分)

Tn=

5
4
-
1
4
×
1
3n-2
-
3n-2
2
×
1
3n
=
5
4
-
6n+5
4
×
1
3n
.(12分)

判断题
单项选择题