问题
解答题
已知正项等差数列an的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列. (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)∵S3=12,即a1+a2+a3=12,
∴3a2=12,所以a2=4.(1分)
又∵2a1,a2,a3+1成等比数列,
∴a22=2a1•(a3+1),即a22=2(a2-d)•(a2+d+1),(3分)
解得,d=3或d=-4(舍去),
∴a1=a2-d=1,故an=3n-2.(6分)
(Ⅱ)bn=
=an 3n
=(3n-2)•3n-2 3n
,1 3n
∴Tn=1×
+4×1 3
+7×1 32
++(3n-2)×1 33
,①1 3n
①×
得1 3
Tn=1×1 3
+4×1 32
+7×1 33
++(3n-5)×1 34
+(3n-2)×1 3n
.②1 3n+1
①-②得
Tn=2 3
+3×1 3
+3×1 32
+3×1 33
++3×1 34
-(3n-2)×1 3n
=1 3n+1
+3×1 3
-(3n-2)×
(1-1 32
)1 3n-1 1- 1 3
=1 3n+1
-5 6
×1 2
-(3n-2)×1 3n-1
,(10分)1 3n+1
∴Tn=
-5 4
×1 4
-1 3n-2
×3n-2 2
=1 3n
-5 4
×6n+5 4
.(12分)1 3n