已知数列{an}的前n项和为Sn满足:Sn=
(1)若a=2,求数列{an}的通项公式 (2)设bn=
(3)在满足条件(2)的情形下,设cn=
|
(1)当a=2时,Sn=2an-2
当n=1时,S1=2a1-2⇒a1=2…(1分)
当n≥2时,Sn=2an-2Sn-1=2an-1′-2…(2分)
两式相减得到an=2an-2an-1,(an-1≠0)得到
=2…(3分)an=2n…(4分)an an-1
(2)由(1)知,bn=
+1=2•
(an-1)a a-1 an
,(3a-1)an-2a an(a-1)
若{bn}为等比数列,
则有b22=b1b3,而b1=3,b2=
,b3=3a+2 a
,3a2+2a+2 a2
故(
)2=3•3a+2 a
,解得a=3a2+2a+2 a2
,再将a=1 3
代入得bn=3n成立,所以a=1 3
. …(9分)1 3
(3)证明:由(2)知an=(
)n,1 3
所以cn=
+1 1+(
)n1 3
=1 1-(
)n+11 3
+3n 3n+1
=3n+1 3n+1-1
+3n+1-1 3n+1
=1-3n+1-1+1 3n+1-1
+1+1 3n+1
=2-(1 3n+1-1
-1 3n+1
),…111 3n+1-1
由
<1 3n+1
,1 3n
>1 3n+1-1
得1 3n+1
-1 3n+1
<1 3n+1-1
-1 3n
,1 3n+1
所以cn=2-(
-1 3n+1
)>2-(3 3n+1-1
-1 3n
),…131 3n+1
从而Tn=c1+c2+…+cn>[2-(
-1 3
)]+[2-(1 32
-1 32
)]+…[2-(1 33
-1 3n
)]=2n-[(1 3n+1
-1 3
)+(1 32
-1 32
)+…+(1 33
-1 3n
)]=2n-(1 3n+1
-1 3
)>2n-1 3n+1
.1 3
即Tn>2n-
.…141 3