问题
解答题
已知等比数列{an}满足a1a2=-
(I)求{an}的通项公式; (II)设bn=
|
答案
(Ⅰ)设an=a1qn-1,依题意,有
解得a1=1,q=-a1•a1q=- 1 3 a1q2= 1 9
.1 3
∴an=(-
)n-1.1 3
(Ⅱ)bn=
+n+1 1×2
+…+n+1 2×3 n+1 n(n+1)
=(n+1)[
+1 1×2
+…+1 2×3
]1 n(n+1)
=(n+1)[(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)]1 n+1
=n.
∴
=n•(-3)n-1.bn an
记数列{
}的前n项的和为Sn,则bn an
Sn=1+2×(-3)+3×(-3)2+…+n×(-3)n-1,
-3Sn=-3+2×(-3)2+3×(-3)3+…+n×(-3)n,
两式相减,得
4Sn=1+(-3)+(-3)2+…+(-3)n-1-n×(-3)n=
-n×(-3)n,1-(-3)n 4
故Sn=
.1-(4n+1)(-3)n 16