问题
填空题
设数列{an}为正项等比数列,且an+2=an+1+an,则其公比q=______.
答案
由题设条件知a1+a1q=a1q2,
∵a1>0,∴q2-q-1=0
解得q=
,∵数列{an}为正项等比数列,1± 5 2
∴q=
.1+ 5 2
故答案:
.1+ 5 2
设数列{an}为正项等比数列,且an+2=an+1+an,则其公比q=______.
由题设条件知a1+a1q=a1q2,
∵a1>0,∴q2-q-1=0
解得q=
,∵数列{an}为正项等比数列,1± 5 2
∴q=
.1+ 5 2
故答案:
.1+ 5 2