已知数列{an}中,a1=
(Ⅰ)令bn=an+1-an-1,求证数列{bn}是等比数列,并求通项bn; (Ⅱ)求数列{an}的通项公式an; (Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在常数λ,使得数列{
|
( I)由已知得 a1=
,2an+1=an+n,∵a2=1 2
,a2-a1-1=3 4
-3 4
-1=-1 2
,3 4
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
=bn+1 bn
=an+1-an-1 an+2-an+1-1
=
-an+1+(n+1) 2 an+n 2 an+1-an-1
=an+1-an-1 2 an+1-an-1
.1 2
数列{bn}是以-
为首项以3 4
为公比的等比数列,bn=-1 2
×(3 4
)n-1.1 2
(Ⅱ)因为bn=-
×(3 4
)n-1,1 2
∴an+1-an=1-
×(3 4
)n-1,a2-a1=1-1 2
×3 2
;a3-a2=1-1 2
×3 2
,…,an+1-an=1-1 22
×(3 4
)n-1,1 2
将以上各式相加得:an-a1=n+1-
(3 2
+1 2
+…+1 22
),1 2n-1
an=n-
-1 2
×3 2
=
(1-1 2
)1 2n-1 1- 1 2
+n-2.3 2n
(Ⅲ)存在λ=2,使得数列{
}为等差数列,Sn+λTn n
∵Sn=a1+a2+…+an
=3(
+1 2
+…+1 22
)+(1+2+…+n)-2n1 2n
=3×
+
(1-1 2
)1 2n 1- 1 2
-2nn(n+1) 2
=3(1-
)+1 2n
=-n2-3n 2
+3 2n
+3.n2-3n 2
Tn=b1+b2+…+bn=
=--
(1-3 4
)1 2n 1- 1 2
(1-3 2
)=-1 2n
+3 2
.3 2n+1
数列{
}是等差数列的充要条件是Sn+λTn n
=An+B,(A、B是常数)Sn+λTn n
即Sn+λTn=An2+Bn,
又Sn+λTn=-
+3 2n
+3+λ(-n2-3n 2
+3 2
)=3 2n+1
+3-n2-3n 2
+λ(-3 2n
+3 2
)3 2n+1
则3-
+λ(-3 2n
+3 2
)=0,当λ=2时,上式成立.3 2n+1
所以存在常数λ=2,使得数列{
}为等差数列.Sn+λTn n