问题
解答题
已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=
(1)求证:{an-1}为等比数列; (2)求数列{bn}的前n项和. |
答案
(1)由题意可得:当n≥2时,由 an =Sn-Sn-1=2an+n-(2an-1+n-1),可得 an =2an-1-1,…(2分)
∴an+1-1=2(an-1-1).…(4分)
又因为S1=2a1+1,所以a1=-1,a1-1=-2≠0,
∴{an-1}是以-2为首项,2为公比的等比数列.…(7分)
(2)由(1)知,an-1=-2×2n-1=-2n,即an=-2n+1,…(9分)
∴bn=
=-2n (1-2n)(1-2n+1)
-1 2n+1-1
,(11分)1 2n-1
故Tn=-[(
-1 2-1
)+(1 22-1
-1 22-1
)+…+(1 23-1
-1 2n-1
)]=1 2n+1-1
-1.(14分)1 2n+1-1