问题
填空题
已知点(1,1)是椭圆
|
答案
设以A(1,1)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵A(1,1)为EF中点,
∴x1+x2=2,y1+y2=2,
把E(x1,y1),F(x2,y2)分别代入椭圆
+x2 4
=1,y2 2
可得
+x12 4
=1,y12 2
+x22 4
=1y22 2
两式相减,可得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0,
∴2(x1-x2)+4(y1-y2)=0,
∴k=
=-y1-y2 x1-x2 1 2
∴以A(1,1)为中点椭圆的弦所在的直线方程为:y-1=-
(x-1),1 2
整理,得x+2y-3=0.
故答案为:x+2y-3=0.